Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 642: 123200, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37414373

RESUMO

A correlative, multiscale imaging methodology for visualising and quantifying the morphology of solid dosage forms by combining ptychographic X-ray computed nanotomography (PXCT) and scanning small- and wide-angle X-ray scattering (S/WAXS) is presented. The methodology presents a workflow for multiscale analysis, where structures are characterised from the nanometre to millimetre regime. Here, the method is demonstrated by characterising a hot-melt extruded, partly crystalline, solid dispersion of carbamazepine in ethyl cellulose. Characterisation of the morphology and solid-state phase of the drug in solid dosage forms is central as this affects the performance of the final formulation. The 3D morphology was visualised at a resolution of 80 nm over an extended volume through PXCT, revealing an oriented structure of crystalline drug domains aligned in the direction of extrusion. Scanning S/WAXS showed that the nanostructure is similar over the cross section of the extruded filament, with minor radial changes in domain sizes and degree of orientation. The polymorphic forms of carbamazepine were qualified with WAXS, showing a heterogeneous distribution of the metastable forms I and II. This demonstrates the methodology for multiscale structural characterization and imaging to enable a better understanding of the relationships between morphology, performance, and processing conditions of solid dosage forms.


Assuntos
Carbamazepina , Raios X , Radiografia , Preparações Farmacêuticas , Difração de Raios X , Formas de Dosagem
2.
J Control Release ; 353: 792-801, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493948

RESUMO

The bioavailability of peptides co-delivered with permeation enhancers following oral administration remains low and highly variable. Two factors that may contribute to this are the dilution of the permeation enhancer in the intestinal fluid, as well as spreading of the released permeation enhancer and peptide in the lumen by intestinal motility. In this work we evaluated an Intestinal Administration Device (IAD) designed to reduce the luminal dilution of drug and permeation enhancer, and to minimize movement of the dosage form in the intestinal lumen. To achieve this, the IAD utilizes an expanding design that holds immediate release mini tablets and places these in contact with the intestinal epithelium, where unidirectional drug release can occur. The expanding conformation limits movement of the IAD in the intestinal tract, thereby enabling drug release at a single focal point in the intestine. A pig model was selected to study the ability of the IAD to promote intestinal absorption of the peptide MEDI7219 formulated together with the permeation enhancer sodium caprate. We compared the IAD to intestinally administered enteric coated capsules and an intestinally administered solution. The IAD restricted movement of the immediate release tablets in the small intestine and histological evaluation of the mucosa indicated that high concentrations of sodium caprate were achieved. Despite significant effect of the permeation enhancer on the integrity of the intestinal epithelium, the bioavailability of MEDI7219 was of the same order of magnitude as that achieved with the solution and enteric coated capsule formulations (2.5-3.8%). The variability in plasma concentrations of MEDI7219 were however lower when delivered using the IAD as compared to the solution and enteric coated capsule formulations. This suggests that dosage forms that can limit intestinal dilution and control the position of drug release can be a way to reduce the absorptive variability of peptides delivered with permeation enhancers but do not offer significant benefits in terms of increasing bioavailability.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Suínos , Mucosa Intestinal/metabolismo , Peptídeos/química , Absorção Intestinal , Administração Oral , Comprimidos , Disponibilidade Biológica
3.
Adv Drug Deliv Rev ; 177: 113923, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390775

RESUMO

Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.


Assuntos
Excipientes/química , Polímeros/química , Tecnologia Farmacêutica , Impressão Tridimensional
4.
Int J Pharm ; 602: 120625, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892062

RESUMO

Multidrug dosage forms (aka combination dosage forms, polypills, etc.) create value for patients through reduced pill burdens and simplified administration to improve adherence to therapy. Enhanced flexibility of multidrug dosage forms would provide further opportunities to better match emerging needs for individualized therapy. Through modular dosage form concepts, one approach to satisfy these needs is to adapt multidrug dosage forms to a wider variety of drugs, each with a variety of doses and release profiles. This study investigates and technically explores design requirements for extending the capability of modular multidrug dosage form concepts towards individualization. This builds on our recent demonstration of independent tailoring of dose and drug release, which is here extended towards poorly water-soluble drugs. The challenging design requirement of carrying higher drug loads in smaller volumes to accommodate multiple drugs at their clinical dose is here met regarding dose and release performance. With a modular concept, we demonstrate high precision (<5% RSD) in dose and release performance of individual modules containing felodipine or naproxen in Kollidon VA64 at both a wide drug loading range (5% w/w and 50% w/w drug) and a small module size (3.6 mg). In a forward-looking design-based discussion, further requirements are addressed, emphasizing that reproducible individual module performance is predictive of dosage form performance, provided the modules are designed to act independently. Therefore, efforts to incorporate progressively higher drug loads within progressively smaller module volumes will be crucial to extend the design window further towards full flexibility of future dosage forms for individualized multidrug therapy.


Assuntos
Preparações Farmacêuticas , Composição de Medicamentos , Quimioterapia Combinada , Felodipino , Humanos , Hansenostáticos , Solubilidade , Água
6.
Pharmaceutics ; 12(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823877

RESUMO

Independent individualization of multiple product attributes, such as dose and drug release, is a crucial overarching requirement of pharmaceutical products for individualized therapy as is the unified integration of individualized product design with the processes and production that drive patient access to such therapy. Individualization intrinsically demands a marked increase in the number of product variants to suit smaller, more stratified patient populations. One established design strategy to provide enhanced product variety is product modularization. Despite existing customized and/or modular product design concepts, multifunctional individualization in an integrated manner is still strikingly absent in pharma. Consequently, this study aims to demonstrate multifunctional individualization through a modular product design capable of providing an increased variety of release profiles independent of dose and dosage form size. To further exhibit that increased product variety is attainable even with a low degree of product modularity, the modular design was based upon a fixed target dosage form size of approximately 200 mm3 comprising two modules, approximately 100 mm3 each. Each module contained a melt-extruded and molded formulation of 40% w/w metoprolol succinate in a PEG1500 and Kollidon® VA64 erodible hydrophilic matrix surrounded by polylactic acid and/or polyvinyl acetate as additional release rate-controlling polymers. Drug release testing confirmed the generation of predictable, combined drug release kinetics for dosage forms, independent of dose, based on a product's constituent modules and enhanced product variety through a minimum of six dosage form release profiles from only three module variants. Based on these initial results, the potential of the reconfigurable modular product design concept is discussed for unified integration into a pharmaceutical mass customization/mass personalization context.

7.
Eur J Pharm Biopharm ; 149: 58-76, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31982577

RESUMO

Individualized therapy with pharmaceutical products aims to elicit predictable and optimized treatment responses from specific patients. Doing so requires production platforms and technology capable of tailoring products to individual patient needs. However, despite recent manufacturing innovations and key technologies on the rise, e.g. continuous manufacturing and additive manufacturing (3D printing), the prevailing production paradigm employed in the pharmaceutical industry is mass production. Although mass production is efficient and cost-effective, it is typically based on a 'one-size-fits-all' product concept and lacks the flexibility and agility required to fully meet the needs of the individual patient. Indeed, we present data that confirm a suspected major imbalance between the recent medical evolution underpinning personalized/precision medicine and the recent advances in the associated manufacturing technologies. In this context we target the needs of the individual as a main driver for pharmaceutical products which support individualized therapy. We particularly address that a wider integration of critical patient dimensions into the manufacture and provision of pharmaceutical products is pivotal for enabling a patient-centric and efficient mass customization-based production paradigm. Here, we present a critical review of the area and its inherent challenges which aims to clarify key design requirements for establishing mass customization opportunities. Through primary sources of scientific information for individualized therapies, patient needs are captured, analysed, and conceptualized. This summarized set of key drivers provides the basis for a proposed patient-centric framework of requirements for use in design of product and production platforms for mass customization. The extent to which emerging pharmaceutical manufacturing technologies satisfy key individual patient needs is explored through a high-level assessment against the proposed patient-centric framework, with special attention paid to oral dosage forms. Altogether this holistic review and position paper, with its constituent steps, reveals major gaps in the evolution of Product-Process-Production approaches and solutions required for producing affordable individualized/personalized pharmaceuticals that respond to the needs and demands of the individual patient. Lastly, in a brief commentary and outlook, we suggest key research directions for closing gaps and addressing manufacturing technology challenges. We also articulate the importance of tackling them in a holistic, integrated way, together with challenges in product individualization and personalization.


Assuntos
Indústria Farmacêutica/métodos , Medicina de Precisão/métodos , Tecnologia Farmacêutica/métodos , Humanos , Preparações Farmacêuticas/administração & dosagem , Impressão Tridimensional
8.
Int J Pharm ; 575: 118908, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809859

RESUMO

A study has been carried out to investigate controlled release performance of caplet shaped injection moulded (IM) amorphous solid dispersion (ASD) tablets based on the model drug AZD0837 and polyethylene oxide (PEO). The physical/chemical storage stability and release robustness of the IM tablets were characterized and compared to that of conventional extended release (ER) hydrophilic matrix tablets of the same raw materials and compositions manufactured via direct compression (DC). To gain an improved understanding of the release mechanisms, the dissolution of both the polymer and the drug were studied. Under conditions where the amount of dissolution media was limited, the controlled release ASD IM tablets demonstrated complete and synchronized release of both PEO and AZD0837 whereas the release of AZD0837 was found to be slower and incomplete from conventional direct compressed ER hydrophilic matrix tablets. The results clearly indicated that AZD0837 remained amorphous throughout the dissolution process and was maintained in a supersaturated state and hence kept stable with the aid of the polymeric carrier when released in a synchronized manner. In addition, it was found that the IM tablets were robust to variation in hydrodynamics of the dissolution environment and PEO molecular weight.


Assuntos
Amidinas/química , Azetidinas/química , Polietilenoglicóis/química , Preparações de Ação Retardada/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Comprimidos
9.
Pharm Res ; 37(1): 9, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848730

RESUMO

PURPOSE: This study uses high drug content solid dispersions for dose window extension beyond current demonstrations using fused deposition modelling (FDM) to; i) accommodate pharmaceutically relevant doses of drugs of varying potencies at acceptable dosage form sizes and ii) enable enhanced dose flexibility via modular dosage form design concepts. METHODS: FDM was used to generate ~0.5 mm thick discs of varying diameter (2-10 mm) from melt-extruded feedstocks based on 10% to 50% w/w felodipine in ethyl cellulose. Drug content was determined by UV spectroscopy and dispensing precision from printed disc mass. RESULTS: Mean felodipine content was within ±5% of target values for all print volumes and compositions including contents as high as ~50% w/w. However, poor dispensing precision was evident at all print volumes. CONCLUSIONS: In pursuit of dose flexibility, this successful demonstration of dose window extension using high content solid dispersions preserves FDM design flexibility by maintaining applicability to drugs of varying potencies. The achieved uniformity of content supports the application of varying content solid dispersions to modular dosage form concepts to enhance dose flexibility. However, poor dispensing precision impedes its utilisation until appropriate compatibility between FDM hardware and materials at varying drug contents can be attained.


Assuntos
Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Felodipino/farmacologia , Tecnologia Farmacêutica , Celulose/análogos & derivados , Excipientes/química , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...